第4回
数量化Ⅰ類
重回帰分析と数量化Ⅰ類
基準変数:量的
説明変数:量的 重回帰分析
説明変数:質的 数量化Ⅰ類
ダミー変数を用いた重回帰分析と等価
数量化Ⅰ類
群馬大学 青木研究室
http://aoki2.si.gunma-u.ac.jp/lecture/Qt/qt1.html
R プログラム
x <- read.csv("数量化1.csv")
x
x1 x2 y
1 1 1 9.3
2 1 2 7.6
3 1 2 11.9
4 1 2 12.4
5 1 3 14.7
6 2 1 17.7
7 2 1 10.4
8 2 1 19.8
9 2 2 21.1
10 2 3 15.0
11 2 3 20.5
12 3 1 23.6
13 3 2 27.4
14 3 3 31.2
15 3 3 33.4
attach(x)
s1 <- lm(y~factor(x1)+factor(x2),data=x)
summary(s1)
#標準偏回帰係数(β)を求める
lm.Beta3 = function(object) {
d = model.matrix(object$terms, eval(object$model, parent.frame()))
object$coefficients[-1] * apply(d[, -1, drop=FALSE], 2, sd) / sd(object$model[,1])
}
lm.Beta3(s1)
結果
> s1 <- lm(y~factor(x1)+factor(x2),data=x)
> summary(s1)
Call:
lm(formula = y ~ factor(x1) + factor(x2), data = x)
Residuals:
Min 1Q Median 3Q Max
-5.1162 -1.7025 0.6137 1.8075 4.3875
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.669 2.267 3.824 0.00335 **
factor(x1)2 6.744 2.267 2.975 0.01392 *
factor(x1)3 17.225 2.423 7.108 3.26e-05 ***
factor(x2)2 2.617 2.349 1.114 0.29128
factor(x2)3 4.704 2.214 2.124 0.05959 .
---
Signif. codes: 0 ‘***’ 0.0Ǫŀ䃱**’ 0.01ŀ‘Ƥ䃻0.05 ‘nj’ŀǥ.1 ‘ ’ Ǫ
Residual standard error: 3.427 on 10 degrees of freedom
Multiple R-squared: 0.8662, Adjusted R-squared: 0.8127
F-statistic: 16.19 on 4 and 10 DF, p-value: 0.0002282
>#標準偏回帰係数(β)を求める
> lm.Beta3 = function(object) {
+ d = model.matrix(object$terms, eval(object$model, parent.frame()))
+ object$coefficients[-1] * apply(d[, -1, drop=FALSE], 2, sd) / sd(object$model[,1])
+ }
> lm.Beta3(s1)
factor(x1)2 factor(x1)3 factor(x2)2 factor(x2)3
0.4318276 0.9956292 0.1612812 0.2898286
>
課題
変数yを予測するために有効な変数は何か
変数x1とx2を用いたモデルはyをどの程度予測できるか
予測に有効な変数のカテゴリーをあげなさい
それぞれ、具体的に根拠となる数値を指摘して答えなさい。