> seiseki <- read.csv("Cluster.csv")
> seiseki
X Math Sci Japan Eng Social
1 Tanaka 89 90 67 46 50
2 Sato 57 70 80 85 90
3 Suzuki 80 90 35 40 50
4 Honda 40 60 50 45 55
5 Kawabata 78 85 45 55 60
6 Yoshino 55 65 80 75 85
7 Saito 90 85 88 92 95
>
> seiseki.d<- dist(seiseki)
警告メッセージ:
dist(seiseki) で: 強制変換により NA が生成されました
> round(seiseki.d)
1 2 3 4 5 6
2 75
3 37 89
4 66 70 58
5 31 67 23 52
6 69 14 83 59 62
7 74 42 96 100 74 50
> sei.d<-dist(seiseki)
警告メッセージ:
dist(seiseki) で: 強制変換により NA が生成されました
> sei.hc<-hclust(sei.d)
> (sei.hc<-hclust(sei.d))
Call:
hclust(d = sei.d)
Cluster method : complete
Distance : euclidean
Number of objects: 7
> summary(sei.hc)
Length Class Mode
merge 12 -none- numeric
height 6 -none- numeric
order 7 -none- numeric
labels 0 -none- NULL
method 1 -none- character
call 2 -none- call
dist.method 1 -none- character
> sei.hc$merge
[,1] [,2]
[1,] -2 -6
[2,] -3 -5
[3,] -1 2
[4,] -7 1
[5,] -4 3
[6,] 4 5
> sei.hc$height
[1] 13.59412 23.34095 37.00270 49.93596 65.87260 100.26764
> sei.hc$order
[1] 7 2 6 4 1 3 5
> par(mfrow=c(2,2))
> plot(sei.hc,main="Complete")
> s.hc3<-hclust(sei.d,method="ward.D")
> plot(s.hc3,hang=-1,main="Ward")
>