dat <- read.csv("kyomi.csv",header=T)
dat
attach(dat)
install.packages("sem")
library(sem)
# 確認的因子分析モデル
model01 <- specifyEquations()
kyomi1 = 1*fkyomi # 測定方程式(興味)
kyomi2 = b2*fkyomi
kyomi3 = b3*fkyomi
oya1 = 1*foya # 測定方程式(親)
oya2 = b5*foya
oya3 = b6*foya
ses1 = 1*fses # 測定方程式(SES)
ses2 = b8*fses
ses3 = b9*fses
C(fkyomi,foya) = c1 # [興味] と [親] の相関関係(共分散)
C(fkyomi,fses) = c2 # [興味] と [SES] の相関関係(共分散)
C(foya, fses) = c3 # [親] と [SES] の相関関係(共分散)
V(fkyomi) = v1 # [興味] の分散
V(foya) = v2 # [親] の分散
V(fses) = v3 # [SES] の分散
fit01 <- sem(model=model01,S=cov(dat),N=nrow(dat))
summary(fit01,fit.indices=c("GFI","AGFI","CFI","NFI","SRMR","RMSEA","AIC"))
standardizedCoefficients(fit01)
# パス図の出力
pathDiagram(fit01, ignore.double=FALSE, edge.labels="values", digits=2,standardize=TRUE)
# 多重指標モデル
model02 <- specifyEquations()
kyomi1 = 1*fkyomi # 測定方程式(興味)
kyomi2 = b2*fkyomi
kyomi3 = b3*fkyomi
oya1 = 1*foya # 測定方程式(親)
oya2 = b5*foya
oya3 = b6*foya
ses1 = 1*fses # 測定方程式(SES)
ses2 = b8*fses
ses3 = b9*fses
fkyomi = g1*foya + g2*fses # 構造方程式
C(foya,fses) = c3 # [親] と [SES] の共分散
V(fkyomi) = v1 # [興味] の誤差変数d1の分散
V(foya) = v2 # [親] の分散
V(fses) = v3 # [SES] の分散
fit02 <- sem(model=model02,S=cov(dat),N=nrow(dat))
summary(fit02,fit.indices=c("GFI","AGFI","CFI","NFI","SRMR","RMSEA","AIC"))
standardizedCoefficients(fit02)
# パス図の出力
pathDiagram(fit02, ignore.double=FALSE, edge.labels="values", digits=2,standardize=TRUE)