top of page

Rによる実行結果

> data923 <- read.csv("Table923.csv")
> data923
        Y  X1   X2   X3  X4 X5 X6  X7
1   44000  95 59.2 10.0  80  7  8 125
2   50000  95 62.5 15.0 200 14 12 200
3  110000  90 54.8 15.0  98  0 15 250
4   16000  12 54.5 10.0  60  5  6  70
5   10000  66 48.0 13.0  42  3  3  40
6  160000  95 67.5  5.0 100 18 17 200
7  100000  95 70.5  8.0 100  3  4 150
8    6500  65 48.3 12.0  50  4  3  50
9    1500  66 51.0  8.0  16  2  2  25
10 164000 138 75.0  7.0 200  1 26 220
11   1300  19 43.0 23.0  18  1  0  20
12  13000  62 67.0 22.0  75  0  0 120
13  40000  66 60.3  0.5 100  7  6 130
14   2200  22 47.5 17.0  34  3  1  30
15  50000  95 62.9  5.0  80  2  4 110
16 200000  95 68.7  7.0  90  3 18 300
> attach(data923)
> cor(data923)#相関行列
            Y         X1         X2         X3         X4         X5         X6         X7
Y   1.0000000  0.7104306  0.7444810 -0.4511601  0.5785899  0.2154686  0.8772393  0.8949123
X1  0.7104306  1.0000000  0.7533081 -0.4767957  0.7251732  0.1728760  0.7145366  0.7167610
X2  0.7444810  0.7533081  1.0000000 -0.4572787  0.7317957  0.2101435  0.6316771  0.7501950
X3 -0.4511601 -0.4767957 -0.4572787  1.0000000 -0.2687331 -0.3194164 -0.4044195 -0.3163315
X4  0.5785899  0.7251732  0.7317957 -0.2687331  1.0000000  0.3602120  0.7444591  0.7197530
X5  0.2154686  0.1728760  0.2101435 -0.3194164  0.3602120  1.0000000  0.2803295  0.2307346
X6  0.8772393  0.7145366  0.6316771 -0.4044195  0.7444591  0.2803295  1.0000000  0.8372739
X7  0.8949123  0.7167610  0.7501950 -0.3163315  0.7197530  0.2307346  0.8372739  1.0000000
> model1 <- lm(Y~X6)#公開授業の数
> summary(model1)

Call:
lm(formula = Y ~ X6)

Residuals:
   Min     1Q Median     3Q    Max 
-42259 -17664  -6756  13336  68355 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)     1337      11912   0.112    0.912    
X6              7577       1108   6.837  8.1e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 32730 on 14 degrees of freedom
Multiple R-squared:  0.7695,    Adjusted R-squared:  0.7531 
F-statistic: 46.75 on 1 and 14 DF,  p-value: 8.095e-06

> AIC(model1)
[1] 381.9441


> model2 <- lm(Y~X7)#企画数
> summary(model2)

Call:
lm(formula = Y ~ X7)

Residuals:
   Min     1Q Median     3Q    Max 
-59716 -16683   4578  15884  50284 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -25966.95   13810.87  -1.880   0.0811 .  
X7             678.42      90.41   7.504 2.86e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 30430 on 14 degrees of freedom
Multiple R-squared:  0.8009,    Adjusted R-squared:  0.7866 
F-statistic: 56.31 on 1 and 14 DF,  p-value: 2.863e-06

> AIC(model2)
[1] 379.607


> model3 <- lm(Y~X6+X7)#企画数、公開授業の数
> summary(model3)

Call:
lm(formula = Y ~ X6 + X7)

Residuals:
   Min     1Q Median     3Q    Max 
-55501 -15037    732  11354  44409 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)  
(Intercept) -20210.8    12475.7  -1.620   0.1292  
X6            3696.5     1664.6   2.221   0.0448 *
X7             406.8      146.1   2.784   0.0155 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 26880 on 13 degrees of freedom
Multiple R-squared:  0.8556,    Adjusted R-squared:  0.8334 
F-statistic: 38.52 on 2 and 13 DF,  p-value: 3.441e-06

> AIC(model3)
[1] 376.4618

 

> step(model3)
Start:  AIC=329.06
Y ~ X6 + X7

       Df  Sum of Sq        RSS    AIC
<none>               9.3962e+09 329.06
- X6    1 3564006627 1.2960e+10 332.20
- X7    1 5602366191 1.4999e+10 334.54

Call:
lm(formula = Y ~ X6 + X7)

Coefficients:
(Intercept)           X6           X7  
   -20210.8       3696.5        406.8  


> # 標準偏回帰係数(β)を求める
> z <- scale(data923)     # 得点を標準化
> z <- data.frame(z)  # データフレーム形式に戻す 
> summary(lm(Y~X6+X7, z))

Call:
lm(formula = Y ~ X6 + X7, data = z)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.84258 -0.22828  0.01111  0.17237  0.67419 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)  
(Intercept) 4.074e-17  1.020e-01   0.000   1.0000  
X6          4.280e-01  1.927e-01   2.221   0.0448 *
X7          5.366e-01  1.927e-01   2.784   0.0155 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4081 on 13 degrees of freedom
Multiple R-squared:  0.8556,    Adjusted R-squared:  0.8334 
F-statistic: 38.52 on 2 and 13 DF,  p-value: 3.441e-06


>


#多重共線性のチェック
> zx <- z[7:8]
> r <- cor(zx)
> VIF <- diag(solve(r))
> tolerance = 1/VIF
> data.frame(tolerance, VIF)
   tolerance     VIF
X6 0.2989725 3.34479
X7 0.2989725 3.34479


VIF >5 (tolerance < 0.2 )の時、多重共線性が疑われる。

© 2018-2024 HIDEYUKI UNUMA

All visitors since 14 Apr. 2018

  • Twitter
  • Instagram
  • Facebook
bottom of page